

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Projects in Croatian regional government units

Assoc. Prof. Vedran Kirincic, PhD

vedran.kirincic@riteh.hr

Sustainable energy / Mobility expert Faculty of Engineering, University of Rijeka, Croatia https://www.linkedin.com/in/vedrankirincic/

Transport sector in Croatian cities

Source: Analysis of the readiness of Croatian cities for a green (energy) transition in 2021.

Primorje-Gorski Kotar County – charging infrastructure

Source: ZE Mobility

	Primorje-Gorski Kotar County
Area (km²)	3.588
Population (2011)	296.195
Density (/km ²)	83
Charging stations	60+
EV and PHEV	~500

EnerMOB - Interregional Electromobility Networks for intERurban low carbon MOBility

Charging stations (2x22 kW AC) for electric vehicles have been developed in the framework of the EnerMOB project.

Three AC charging stations have been installed and are operating in attractive tourist and traffic locations in **Rijeka International Airport**, **Municipality of Fužine** and on **island Rab in the port Melak.**

Installation of charging stations for electric vehicles has created conditions for greater use of electric vehicles in the County of Primorje and Gorski Kotar, which leads to a reduction in carbon dioxide emissions generated in road transport, increased energy efficiency and reduced dependence on other energy sources.

With the implementation of the EnerMOB project, the County is more accessible and enables greater mobility of the local population and visitors.

EnerNETMob - Mediterranean Interregional Electromobility Networks for intermodal and interurban low carbon transport systems

The Mediterranean program covers many regions and cities that do not have developed policies for sustainable mobility, and given the growing growth of electric cars at both European and national and regional levels, it is necessary to systematically develop long-term strategies. So far, small infrastructure networks have not been consolidated in the EU to allow further movement of battery-powered electric vehicles. The EnerNETMob project seeks to address the needs of these two challenges of a lack of charging infrastructure and common standards.

The overall goal of the project is to develop, test and promote sustainable electromobility plans, based on common standards of the electric transport system at the transnational level, by connecting a regional network of electric charging stations, in order to achieve greater mobility between cities and regions in the Mediterranean.

The project budget: 5,742,802.10 EUR PGZ budget: 415,875.00 EUR

Primorje-Gorski Kotar County vs rest of Croatia

Number of charging station locations

PGZ Rest of CRO

* The EU's Directive on Alternative Fuel Infrastructure – DAFI, 2014.

CRO

Rest of CRO

Ratio vehicles for charging /

charging locations

25.00

20.00

15.00

5.00

0.00

PGZ

* 10.00

Ratio vehicles for charging / sockets

Primorje-Gorski Kotar County projections

	1]
Primorje and				
Gorski Kotar				
county	Parameter	2020	2025	2030
Basic scenario	AC sockets	146	268	298
	DC sockets	13	21	23
	Total sockets	159	289	321
	Number of charging			
	stations (pillars)	120	231	264
	Number of locations	62	110	122
Moderate scenario	AC sockets	206	330	348
	DC sockets	27	44	46
	Total sockets	233	374	394
	Number of charging stations (pillars)	180	299	323
	Number of locations	92	126	134
Dynamic scenario	AC sockets	263	402	403
	DC sockets	35	46	54
	Total sockets	298	447	457
	Number of charging			075
	stations (pillars) Number of locations	226 116	361 126	375 164

Basic scenario

Source: "Interdisciplinary strategy of zero emissions for integrated development of the island of Krk", igr AG, Ponikve Eko Otok Krk, Croatia, 2012.

Difficulty

INTERDISCIPLINARY STUDY OF ELECTROMOBILITY AT THE ISLAND OF KRK AND THE MOBILE PHONE APPLICATION

SUMP - Sustainable Urban Mobility Plan

ELECTRIC VEHICLES ON THE ISLAND OF KRK January 2017

SHARING SYSTEM STUDY AND

MARKETING STUDY FOR

SHARING SYSTEM ON THE ISLAND OF KRK MANAGEMENT PLAN

RI . EKO KRK

Energy transition of the Cres-Losinj archipelago

- Transport on Island
- Sea transport public
- Sea transport commercial
- Tertiary sector
- Industry
- Residential buildings

Final En	ergy Consun	nption	in 2018 [MWh]	CO ₂ [tonne]
Electricity			59,666	9,427
Heating			54,683	2,548
Transport to & from			33,000	8,811
Transport on Island			22,862	6,440
Industry	I		506	135
		TOTAL:	170,717	27,361

Energy transition of the Cres-Losinj archipelago

Energy transition of the Cres-Losinj archipelago

Source: Examples of energy transition in the Cres-Lošinj archipelago https://www.youtube.com/watch?v=92Jk6MNjn2o

Challenges and opportunities

4 locations

eBike-sharing system City of Rijeka

Use of e-bikes by tariffs (hours)

Number of sessions in 2020

Bolt

The fast, affordable way to ride.

Bolt electric scooter rentals City of Rijeka

nextbikedo

electric bike rentals - City of Split

http://www.i-sharelife.eu/en/news/ http://www.i-sharelife.eu/wp-content/uploads/2021/05/5-OSIJEK-BROCHURE-EN.pdf

Climate neutral mobility concept

- 1) Electrification of vehicle fleet
- the analysis of energy consumption and the development of a basic inventory of emissions of the existing fleet of vehicles
- decarbonization plan
- 2) Innovative mobility concepts
- sharing systems (car, bike, scooter)
- mobility on demand
- 3) Integration with renewable energy sources
- (non)integrated, microgrids, V2X
- 4) Energy infrastructure for vehicle charging
- chargers on public lighting poles, domestic chargers family houses and apartment buildings, destination chargers, travel (fast and ultra fast) chargers

5) Active participation of locals and visitors

Mobility As A Service - MaaS

"The key concept behind MaaS is to put **the users at the core of transport services**, offering them **tailor made mobility solutions** based on their **individual needs**. This means, for the first time, easy access to the most appropriate transport mode or service will be included in a bundle of flexible travel service options for end users." <u>The European Mobility as a Service Alliance</u>

CURRENT SITUATION

MaaS MODEL

Future of mobility

https://medium.com/iomob/mobility-as-a-service-maas-and-mobility-on-demand-mod-via-blockchain-64e36a2f6676

Why Mate Rimac is working on electric robotaxis

"...electrification will not change anything concrete. The real revolutionary change will not be brought by electric cars. Smartphones have changed our lives, and we can expect the same in the future with cars: **changing mobility will change our lives**... Market change refers to vehicle ownership as well as autonomy. In such a scenario, people will no longer buy or own cars, but will use them and pay only when needed." – Mate Rimac, conference Auto2030

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Projects in Croatian regional government units

Assoc. Prof. Vedran Kirincic, PhD

vedran.kirincic@riteh.hr

Sustainable energy / Mobility expert Faculty of Engineering, University of Rijeka, Croatia https://www.linkedin.com/in/vedrankirincic/

